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Abstract
We construct non-relativistic models of complex scalar bosons coupled to
Chern–Simons gauge fields by using a Galilean covariant formulation based on
the embedding of the (d, 1) Newtonian spacetime into a (d + 1, 1) Minkowski
manifold with light-cone coordinates. We also examine various generalizations
of the Carroll–Field–Jackiw three-dimensional Chern–Simons term for which
the usual Lorentz covariance is broken. Models with cubic Chern–Simons
term and non-Abelian gauge fields are briefly discussed. Our main result is the
application of this covariant formalism to the investigation of the Aharonov–
Bohm effect, for which we retrieve the invariant scattering amplitude up to
one-loop.

PACS number: 11.15.−q

1. Introduction

During the last two decades, various non-relativistic systems have been described with the help
of a covariant formulation of Galilean field theories in five dimensions [1–8]. This approach
consists of building Galilean-covariant actions, as it is usually done with Lorentz covariance,
except that we begin with a (4, 1) Minkowski manifold. Non-relativistic theories based on
Chern–Simons (CS) gauge fields have also been largely explored. The CS form appeared
in mathematics nearly 30 years ago [9], and physicists began to employ it soon thereafter
[10]. These theories have been studied mostly in planar physics, but they may be defined
also in higher odd-dimensional spacetimes. However, they can be both Lorentz-covariant and
quadratic in the gauge field in (2, 1) spacetime only. Some reviews of CS theories are given
in [11–13]. In the first investigation of a non-relativistic theory of bosons interacting with
Chern–Simons fields, Jackiw and Pi have constructed a theory for quantum system of many
point particles, with the CS term tying magnetic flux to the particle fields. Moreover, they
have discussed various properties and soliton solutions of their model [14].
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Besides, CS theories are used to give a field-theoretical description of the Aharonov–
Bohm (AB) effect, which describes the quantum effect of electromagnetic potentials on
charged particles; more specifically, the scattering of the particles by a magnetic flux tube
[15]. This approach was first proposed in [16] and it was shown in [17] that it is necessary to
include a contact interaction among the boson fields in order to ensure the renormalizability in
a perturbative field-theoretical treatment of the AB problem. In addition, the non-relativistic
limit of the relativistic theory of the AB problem has been considered [18], as well as relativistic
corrections [19].

In this paper, we study field models with non-relativistic massive spinless bosons coupled
to a CS gauge field, thereby following the same lines as in [3–8], where various applications
of a covariant formulation of Galilean field theories are discussed. We express well-known
non-relativistic CS Lagrangians in a covariant form, and then propose some generalizations.
Our main objective is to retrieve the AB scattering amplitude, at the tree-level and one-loop
corrections, with a Galilean-covariant path integral quantization.

The algorithm utilized henceforth in order to implement the Galilei symmetry consists
in defining manifestly covariant Lagrangians on a (d + 1, 1) Minkowski manifold, and then
reducing them onto the (d, 1) Newtonian spacetime. Such an embedding of the Galilean
space into the extended space is based on the fact that the non-trivial central extension of the
11-dimensional Galilei algebra in (3, 1) dimensions is a Lie subalgebra of the 15-dimensional
Poincaré algebra in (4, 1) dimensions [20]. Since not all representations of the Galilei group
in (3, 1) spacetime can be obtained from representations of the Poincaré group in (4, 1)

manifold, this description is therefore not likely to be complete, i.e. there exist Galilean
invariant theories which cannot be described by this reduction. The determination of these
representations remains an open question. For instance, the reduction procedure in (2, 1)

spacetime describes one central charge only, whereas the Galilei Lie algebra then admits two
central charges.

Following [3–8], let us define a Galilei vector X = (X1, . . . , Xd,X4, X5) as transforming
under a Galilean boost with relative velocity V = (V1, . . . , Vd) according to

X′ = X − VX4, X4′ = X4, X5′ = X5 − V · X + 1
2 V2X4.

The new coordinate X5 may be associated with the quasi-invariance of non-relativistic
Lagrangians or, equivalently, with the phase that must be included into the quantum
wavefunction, so that the Schrödinger equation be invariant under the Galilei transformations
[21]. The Galilean scalar product of two vectors is invariant under these transformations,
with the Galilean metric given by

gµν = gµν =

1d×d 0 0

0 0 −1
0 −1 0


 .

For planar physics, discussed hereafter, we take d = 2, so that we begin with a (3, 1) spacetime.
The reduction approach to Galilean invariance has been investigated from different points of
view by many authors [22]. Since the Poincaré Lie algebra of the extended manifold includes
the Galilei as well as the Poincaré Lie algebras, this approach provides a unifying geometrical
view for both non-relativistic and relativistic physics. In particular, it has allowed us to
unify various d-brane fluid models: the Nambu–Goto relativistic d-brane moving in (d + 1, 1)

Minkowski space reduces to the non-relativistic Chaplygin gas model, on one hand, and to the
relativistic Born–Infeld model, on the other hand [23, 24].

Let us denote the five-coordinate vector as

xµ = (x, t, s). (1)



Galilean-covariant models of bosons coupled to a Chern–Simons gauge field 9879

With the usual relations, E = i∂t , as well as m = i∂s , we may write the five-momentum as

pµ ≡ −i∂µ = (−i∇,−i∂t ,−i∂s) = (p,−E,−m). (2)

This provides an interpretation of the fifth coordinate: it is conjugate to the mass, in a way
similar to the energy conjugate of time, and linear momentum conjugate of position.

If we act on a wavefunction with the invariants P µPµ and P5 of the Poincaré algebra in
(4, 1) dimensions, then we find, using equation (2):

∂µ∂µ�̃(x) = k2�̃(x), ∂5�̃(x) = −im�̃(x),

where x is a five-dimensional vector. The first equation, together with equation (2), leads to
the dispersion relation p2 − 2mE = −k2. (If we define k2 = 2m2, then we find E = p2

2m
+ m.)

From the second equation above, we find that the fifth coordinate can be factored out of the
wavefunction as follows:

�̃(x) = e−imx5
�(x, x4) = e−ims�(x, t). (3)

It follows therefrom that massless fields are independent of x5. With equation (1), the first
equation gives the Schrödinger equation for a free massive spinless particle:

i∂t�(x, t) = − 1

2m
∇2�(x, t),

where we have absorbed the constant k within the energy operator. The extra coordinate x5,
or s, is a real number, and we will interpret any integral over it as∫

dx5 → lim
l→∞

1

2l

∫ l

−l

ds.

Therefore, an integral over s will be reduced to the usual integral over (3, 1) spacetime if the
integrand is independent of s. This will prevent us from carrying along the factor l.

Our paper is organized as follows. In section 2, we write the general Maxwell–Chern–
Simons–Higgs Lagrangian, describing the interaction between a complex scalar boson field
and a CS gauge field, and then we discuss various field definitions in terms of x5. We also
propose further generalizations. In section 3, we employ the Galilean-covariant path-integral
quantization method [3] to study the Aharonov–Bohm problem. The scattering amplitude is
computed up to one-loop. Finally, the concluding remarks are in section 4.

2. Galilei-covariant Lagrangians with Chern–Simons gauge field

In this section, we study the coupling of a spinless scalar field to a Maxwell–Chern–Simons
gauge field in the plane [25, 26]. We also propose generalizations such as CS term of higher
degree and number of dimensions as well as non-Abelian CS models. Note that henceforth,
whenever we consider lower dimensions, we shall denote time and s by x4 and x5, respectively,
and we will rather delete the coordinate x2 or x3, accordingly. Also, throughout the paper,
fields or Lagrangians denoted with the tilde mark are defined on the extended space, whereas
symbols without the tilde denote fields for which the reduction has been performed. Greek
indices label coordinates in extended spacetime, lowercase latin indices a, b, etc denote
spatial coordinates and we use uppercase latin indices A,B, etc for field components, gauge
indices, etc.

Let us define a model on a (3, 1) Minkowski manifold with coordinates denoted by
(x1, x2, x4, x5), and we reduce it to a (2, 1) Newtonian spacetime with coordinates (x1, x2, x4).
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Consider a spinless scalar field interacting with an Abelian CS gauge field A described by the
Maxwell–Chern–Simons–Higgs Lagrangian:

L̃MCSH = β(D̃µ�̃)∗(D̃µ�̃) +
κ

2
εµνρÃµ∂νÃρ +

γ

4
F̃ µνF̃ µν − k2|�̃|2 − V (|�̃|), (4)

where β is a constant, F̃ µν ≡ ∂µÃν − ∂νÃµ and D̃µ ≡ ∂µ − ieÃµ. Later, it will be an easy
matter to set equal to zero any constant, should we wish to neglect a particular term. The
situation in which e, κ and γ are equal to zero has been quantized in [3] (therein, the fourth
term of equation (4) reads + k2

2m
|�̃|2). In the relativistic case, the Maxwell term remedies the

absence of transverse components in CS fields which, in turn, leads to an inconsistency with
the path integral over the gauge field. In addition to restoring the convergence of the path
integral over the gauge fields, the Maxwell term provides a gauge-invariant regularization and
renormalization of the theory [27]. However, we will not include it in our analysis of the AB
effect, discussed in section 3.

The totally antisymmetrical tensor in the CS term should be understood as εµνρ = ε5µνρ ,
i.e. the indices within εµνρ run over 1, 2, 4 only. More on this will be given shortly. The
variations of the corresponding action with respect to �̃∗ and Ãµ give

βD̃µD̃µ�̃ = − δV

δ�̃∗ − k2�̃, (5)

and
κ

2
εµαβF̃ αβ = −ej̃µ + γ ∂αF̃ αµ, (6)

respectively, where we have defined the five-current

j̃ µ = iβ(�̃∗(D̃µ�̃) − (D̃µ�̃)∗�̃). (7)

Let us choose the potential in equation (4) as follows:

V (|�̃|) = λ

4
|�̃|4. (8)

Then, equation (5) becomes

βD̃µD̃µ�̃ = −λ

2
|�̃|2�̃ − k2�̃. (9)

The appearance of this potential in the second-quantized Hamiltonian leads to delta-function
interactions between particles in the corresponding first-quantized theory. Dimock has shown,
for one spatial dimension, that the delta-function potential of quantum mechanics is the non-
relativistic limit of the relativistic λ�4 theory [28]. The contact interaction of anyons has been
considered in [29]. Such models lead to ultraviolet divergences which require regularization
and renormalization [30]. Also, note that at the so-called self-dual coupling point λ = ±1/|κ|,
the renormalized scattering amplitude becomes scale independent [17].

As mentioned above, the CS term of equation (4) vanishes at once if one defines the
embedding as in equation (1) and if the five-potential Ãµ does not depend on s. This is the
case, unless the indices take on the values 1, 2, 4, which is achieved by modifying the CS term
as follows [31]:

1
2κεµναβvµÃν∂αÃβ,

where we take vµ = (0, 0, 1). In relativistic theories, this term is gauge invariant, but, unlike
the usual CS term, it is not Lorentz invariant [31]. Henceforth, this choice of vµ simply
amounts to replacing εαµνρ with ε5µνρ , so that we can still use the Lagrangian of equation (4),
except that the indices of εµνρ run over 1, 2, 4, unlike the other terms of the Lagrangian, where
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the indices are 1, 2, 4, 5. Henceforth, we utilize the convention ε1245 = 1, so that, for instance,
ε124 = −1.

In a recent publication [8], it was observed that the ‘magnetic’ limit of Maxwell
equations investigated by Le Bellac and Lévy–Leblond [32] may be obtained by substituting
Ãµ = (Ã1, Ã2, Ã4, Ã5) = (A(x, x4),−φ(x, x4), 0) into the covariant form of the
equations of motion. The other possibility, called ‘electric’ limit, is obtained by Ãµ =
(A(x, x4), 0,−φ(x, x4)). However, we have observed recently that this choice cannot lead
to the Lagrangians which correspond to the respective Galilean limits [5]. The reason is
that by putting gauge field components equal to zero before we compute the Euler–Lagrange
equations, these missing components do not allow us to recover the full set of equations. The
Galilean electric and magnetic Lagrangians both involve auxiliary fields, which may be set
equal to zero only after the field equations have been obtained. The proper way to construct
these Lagrangians, within the present formalism, is to define

Ãµ = (Ã1, Ã2, Ã4, Ã5) = (A(x, t),−φM(x, t),−φE(x, t)). (10)

The two components φM and φE should not be understood as two simultaneously physical
scalar potentials. The Lagrangian which corresponds to the magnetic limit is retrieved by
considering φE as an auxiliary field, set equal to zero in the equations of motion, whereas φM

is the physical scalar potential field. With equation (10), we get the following components of
the electromagnetic field strength tensor: F4a = ∂aφM + ∂tAa, F5a = ∂aφE and F54 = ∂tφE .
Note also that the Galilean form of the Lorentz gauge condition reads

∂µAµ = ∇ · A + ∂tφE + ∂sφM = ∇ · A + ∂tφE,

since the fields φ are massless, i.e. ∂sφ = 0. This remains as it is for the electric limit (for
which φM = 0) but it reduces to the Coulomb gauge condition in the magnetic limit (for which
φE = 0) [8]. More about the gauge conditions and the Galilean electromagnetism may be
found in [33].

If we utilize equations (1), (3), (8) and (10), then the Lagrangian of equation (4) becomes

L = β[(D�)∗ · D� + i(m − eφE)(�(Dt�)∗ − �∗Dt�)] +
κ

2
[A × ∂tA + A × ∇φM

+ φMB] +
γ

2
[B2 − 2(∇φM + ∂tA) · ∇φE − (∂tφE)2] − k2|�|2 − λ

4
�4, (11)

where � is a function of x and t only and

B ≡ Fxy = ∂xAy − ∂yAx. (12)

Since x is a two-dimensional vector, the magnetic field ∇×A is not a vector but a pseudo-scalar.
Note that the term A × ∇φ is absent in [17].

From equation (9), with similar definitions, we find:

i
(

1 − e

m
φE

)
∂t�(x, t) =

[
− 1

2m
D2 + e

(
1 − e

m
φE

)
φM

+ i
e

m
∂tφE − k2

2mβ
− λ

4mβ
|�(x, t)|2

]
�(x, t),

where D = ∇ − ieA and Dt = ∂t + ieφM . With the overall constant β defined as

β = − 1

2m
, (13)

and by setting φE = 0, so that we work in the magnetic limit, then we find the nonlinear planar
Schrödinger equation with coupling to a gauge field:

i∂t�(x, t) =
(

− 1

2m
D2 + eφM + k2 +

λ

2
|�(x, t)|2

)
�(x, t).
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From equations (7), (10) and (13), we get

ja = 1

2mi
(�̃∗(Da�̃) − �̃(Da�̃)∗),

j 4 = −j5 = m − eφE

m
|�(x, t)|2 → |�(x, t)|2, (14)

j 5 = −j4 = 1

2mi
((∂t�

∗)� − �∗∂t� − 2ieφM |�|2).
Now let us turn to the components of equation (6). For µ = 4, with equations (3) and

(10), we find

B = − e

κ

(
m − eφE(x, t)

m

)
|�(x, t)|2 + γ∇2φE(x, t),

which, when φE = 0, becomes

B = − e

κ
|�(x, t)|2. (15)

For µ = 1, 2, equation (6) leads to

εab
(
∂tAb + ∂bφM +

γ

κ
∂bB

)
= − 1

κ
(eja + γ ∂t∂aφE), (16)

where a, b = 1, 2, with ja in equation (14) being the two components of the probability
current, and the totally antisymmetric tensor such that ε12 = +1. The magnetic induction B
is given by equation (12). Equations (15) and (16) characterize the CS gauge field. The first
expression exhibits the linearity between the density of charge ρ and the magnetic field ∇ ×A,
and the second equation ensures the conservation of the particles flux during time evolution.
Thus, the manifestly Galilean-covariant form of these equations is given by equations (5)
and (6), with the potential as in equation (8) and γ = 0. Similarly, the Lagrangian density
considered at the beginning of this section is the Galilei-covariant form of the one used in
[17]. In section 3, it will enable us to quantize this model with a covariant approach.

Before we apply our approach to the AB effect, let us briefly discuss some generalizations.
The ‘genuine’ Chern–Simons theories are well defined in odd-dimensional spacetimes only.
They do not violate Lorentz symmetry, unlike the models investigated in [31]. Therefore,
the Galilean cubic CS interaction is defined in a five-dimensional manifold, with four spatial
dimensions. Then, by performing the embedding of the Newtonian spacetime into this five-
dimensional manifold, we end up with a non-relativistic model in (3,1) spacetime. Let us
define the Lagrangian:

L̃3MCSH = − 1

2m
(D̃µ�̃)∗(D̃µ

�̃) +
κ

2
εαµνστ Ãα∂µÃν∂σ Ãτ +

γ

4
F̃

µν
F̃ µν − k2|�|2 − V (|�̃|),

where we use equation (13). From the embedding given in equation (1) with the fields defined
as in equations (3) and (10), this Lagrangian reduces to

L3MCSH = − 1

2m
|D�|2 − i

2m
(m − eφE)((Dt�)∗� − �∗Dt�) + κφEB · (∂tA + ∇φM)

− κφMB · ∇φE − κA · [B∂tφE + (∂tA + ∇φM) × ∇φE] +
γ

2
B2

− γ (∂tA + ∇φM) · ∇φE − γ

2
(∂tφE)2 − k2|�|2 − V (|�|). (17)

The boldface font now denotes three-dimensional vectors. If we take φE = 0, then the CS
term disappears completely from the Lagrangian.

The Euler–Lagrange equations with respect to the field Aα give
3
2εαµνστ ∂µÃν∂σ Ãτ = −ej̃

α
+ γ ∂µF̃

µα
, (18)
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where j̃
α

is given in equation (7). For α = 1, 2, 3, this equation becomes, by using
equations (1), (3) and (10):

γ∇ × B + γ ∂t∇φE − 3B∂tφE + 3∇φE × (∂tA + ∇φM) = −ej.

Obviously, this may be obtained by variations of equation (17) with respect to the components
of A. If we consider the magnetic limit, for which φE = 0, this reduces further:

γ∇ × B = −ej.

Let us take equation (18) with α = 4 or, equivalently, we vary equation (17) with respect to
the field φM , then we obtain

3B · ∇φE + γ∇2φE = ej 4 = e
m − eφE

m
|�(x, t)|2.

It becomes |�(x, t)|2 = 0 in the magnetic limit, for which φE = 0. From equation (18) with
α = 5, we find

(3B + γ∇) · (∂tA + ∇φM) − γ ∂ttφE = ej 5 = e

2mi
((∂t�

∗)� − �∗∂t� − 2ieφM |�|2).
For φE = 0, this becomes

(3B + γ∇) · (∂tA + ∇φM) = e

2mi
((∂t�

∗)� − �∗∂t� − 2ieφM |�|2).
Let us conclude this discussion with non-Abelian CS models. Relativistic models have

been considered in [34], and the corresponding non-relativistic theory has been investigated
in [35]. The perturbative treatment of the non-Abelian AB effect to one-loop has been studied
in [36].

For a non-Abelian gauge group, generated by a Lie algebra with basis elements
{t1, t2, . . . , tn} satisfying the commutation relations:

[tA, tB] = if ABCtC,

the Lagrangian in equation (4) may be generalized to

L̃NAMCSH = − 1

2m
(D̃µ�̃)∗

(
D̃

µ
�̃

)
+

κ

2
εµνρ Tr

(
Ãµ∂νÃρ − 2

3
igÃµÃνÃρ

)

+
γ

4
Tr(F̃

µν
F̃ µν) − V (|�̃|), (19)

where the trace is over the gauge group index. We have chosen β = −1/2m, as in equation
(13). The relation between the field strength tensor F̃ µν = i

g
[D̃µ, D̃ν] and the covariant

derivative D̃µ = ∂µ − igÃ
a

µta provides the usual expression:

F̃
c

µν = ∂µÃ
c

ν − ∂νÃ
c

µ + gf abcÃ
a

µÃ
b

ν.

For the gauge algebra su(2), generated by the Pauli matrices, the CS term becomes:

εµνρ κ

2
Tr

(
Ã

A

µtA∂νÃ
B

ρ tB − 2

3
iÃ

A

µtAÃ
B

ν tBÃ
C

ρ tC
)

= εµνρκ

(
δABÃ

A

µ∂νÃ
B

ρ +
2

3
gεABCÃ

A

µÃ
B

ν Ã
C

ρ

)
,

where the capital latin letters denote su(2) indices. With the embedding given in equations (1),
(3) and (10), the CS term reduces to

κδAB

[(
AA

y ∂xφ
B − AA

x ∂yφ
B
) − φABB +

(
AA

y ∂tA
B
x − AA

x ∂tA
B
y

)] − 2
3κgεABC

[
AA

x AB
y φC

+ AA
y φBAC

x + φBAB
x AC

y − AA
y AB

x φC − AA
x φCAB

x − φAAB
y AC

x

]
,

where BC ≡ ∂xA
C
y − ∂yA

C
x .
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3. Covariant formulation of the Aharonov–Bohm problem

As an application of the models discussed above, we now study the AB effect for bosons
in a field-theoretical approach, as done in [17]. However, we use a covariant path-integral
approach, as was done in [3], with the Lagrangian density of equation (4), where some terms
are set equal to zero. The Galilean-covariant generating functional has the usual form:

Z[J̃ (x), J̃
∗
(x), j̃µ(x)] =

∫
D�̃D�̃∗DAµ eiI−i

∫
d4x(J̃ (x)�̃∗(x)+J̃

∗
(x)�̃(x)−j̃ µ(x)Ã

µ
(x))∫

D�̃D�̃∗DAµ eiI
. (20)

where d4x = dx1 dx2 dx4 dx5. The action I is usually split as follows:

I = I� + ICS + IGF + IMaxw,

with the �̃ contribution:

I� =
∫

d4x

[
− 1

2m
(D̃µ�̃)∗D̃µ

�̃ − k2|�̃|2 − V (|�̃|)
]

,

(using equation (13)) the CS term:

ICS =
∫

d4x
κ

2
εµνρÃµ∂νÃρ,

the gauge fixing term:

IGF =
∫

d4x
1

ξ
(∂µÃ

µ
)2,

and the regularizing Maxwell term:

IMaxw =
∫

d4x
γ

4
F̃

µν
F̃ µν.

It is known that the covariant formulation of the path-integral quantization of the non-
relativistic scalar field yields the following bosonic propagator in the extended momentum
space [3]:

�F (p) = − 2p4

(pµpµ − k2 − iε)
,

with the following Fourier transform,

�F (x − y) = 1

(2π)4

∫
d4p �F (p) eip·(x−y)[2πδ(p4 − m)]. (21)

The CS gauge field is not dynamical, as shown by equations (15) and (16). Therefore, in a
quantum field theory, it is treated only as a field which generates internal propagations, that is
to say, virtual particles that propagate instantaneously in time. The Fourier transform of the
gauge propagator is

Dµν(w − z) = 1

(2π)4

∫
d4pDµν(p) eip·(w−z)δ(p4). (22)

Hereafter we take γ = 0, so that we have

Dµν (p̂) = iεµνρp̂
ρ

κp̂2
+

ξ p̂µp̂ν

p4
.

The symbol p̂ denotes the momentum vector given in equation (2), but with m = 0. Note
that this choice generates directly the ordinary gauge propagator, since p̂2 = p2. In the
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Landau gauge, for which ξ = 0, the gauge field propagator has the following non-vanishing
components (remembering that εµνρ = ε5µνρ),

Di4(p̂) = iεij p̂
j

κp̂2
.

Therefore, the path-integral quantization formalism developed in [3] can also be employed
in the study of the present case. Also, it is worth mentioning that the presence of the delta
functions in equations (21) and (22) makes this approach compatible with the fact that the
momentum component P 4, equivalent to the mass, is Galilean invariant. Therefore, it plays
the role of the mass of the field quanta, in a quantized formalism. The argument of the delta
function in (22) is due to the fact that the CS gauge field is massless.

Now let us determine the scattering amplitude of the system described by equation (20).
We denote by the ket |p1, p2〉 the initial state of two non-relativistic particles described by
the scalar field �(x), and |p′

1, p
′
2〉 represents the final state. Then the scattering amplitude is

defined by

Sf i = 〈p′
1, p

′
2|S|p1, p2〉,

with the operator S given by

S =: exp

{∫
d4x

[
�̂in(x)Ox

δ

δJ̃ (x)
+ �̂†

in(x)Ox

δ

δJ̃
∗
(x)

]}
: Z[J̃ , J̃

∗
, j̃µ]|J=J ∗=j̃ µ=0, (23)

where the operator �̂in is the field in the initial configuration, Ox = −β∂µ∂µ, and : :
denotes the normal ordering (details are given in [3]). The expansion of the exponential in
equation (23) yields several terms, but we only show the physically interesting one:

S
(4)
f i =

∫
d4x1 d4x2 d4x3 d4x4 ei(p1·x1+p2·x2−p′

1·x3−p′
2·x4)Ox1Ox2Ox3Ox4G(x1, x2, x3, x4) .

This is the reduction formula for the four-point Green function, given by

G(x1, x2, x3, x4) = δ4Z[J̃ , J̃
∗
, j̃µ]

δJ̃
∗
(x1)δJ̃

∗
(x2)δJ̃ (x3)δJ̃ (x4)

∣∣∣∣∣
J̃=J̃

∗=j̃ µ=0

.

Since the CS particles exist only in the intermediate processes, it justifies our interest in the
scattering processes involving only matter field quanta. Therefore, gauge propagators appear
as internal lines of Feynman diagrams.

For convenience, let us define the invariant amplitude A(p1, p2, p
′
1, p

′
2), related to the

scattering amplitude S by

〈p′
1, p

′
2|S − 1|p1, p2〉

= − i(2π)4δ̃4(p1 + p2 − p′
1 − p′

2)M
(
p4

1, p
4
2, p

′4
1 , p′4

2

)
A(p1, p2, p

′
1, p

′
2).

The factor M
(
p4

1, p
4
2, p

′4
1 , p′4

2

)
carries all the delta functions which involve internal mass

conservation in the diagrams, that appear because of the definition of the gauge and particle
propagators given by equations (21) and (22).

By following standard methods, we write the generating functional as

Z[J̃ (x), J̃
∗
(x), j̃µ(x)] = N exp

{
−i

∫
d4x Lint

[
1

i

δ

δJ̃
∗ ,

1

i

δ

δJ̃
,

1

i

δ

δj̃µ

]}
Z0[J̃ , J̃

∗
, j̃µ],

(24)

where N = Z [0, 0, 0]−1. The term Lint comes from the interacting part of the action I in
equation (20):

Lint = ieβAµ[�̃∂µ�̃∗ − �̃∗∂µ�̃] − βe2AµAµ�̃∗�̃ − λ

4
|�̃|4. (25)



9886 L M Abreu and M de Montigny

p

µ

p′

(a)
p

µ

p′

ν

(b) (c)

Figure 1. Vertex diagrams for the theory defined in equation (26).

(a) (b)

Figure 2. Two-particle scattering at the tree-level.

Note that in equation (24), Lint appears in the functional representation. The other factor
Z0[J̃ , J̃

∗
, j̃µ] can be cast in a convenient form:

Z0[J̃ , J̃
∗
, j̃µ] = Z0

[
0, 0, 0] exp

{
−i

∫
d4x d4y[J̃

∗
(x)�F (x − y)J̃ (y)

− 1

2
j̃

µ
(x)Dµν(x − y)j̃

ν
(y)

]}
.

Finally, the factor Z0[0, 0, 0] contains the free part of the action I in (20).
We note that the following covariant interaction vertices emerge from the interaction terms

in equation (25), expressed as

�µ(p + p′) = iβe(pµ + p′µ), �µν = 2iβe2gµν, �λ = iλ, (26)

as displayed in figure 1.
The above developments allow us to study the two-particle interaction in a perturbative

way. At the tree-level, there are two relevant graphs for the scattering amplitude: the contact-
interaction and one-gauge-particle exchange. They are represented in figure 2. The contact-
interaction case, already studied in [3], is

S
(0)
f i,λ = iλ(2π)4δ̃4(p1 + p2 − p′

1 − p′
2).

The scattering amplitude for the graph of one-gauge-particle exchange is expressed as

S
(0)
f i,exc = −i(2π)5δ̃4(p1 + p2 − p′

1 − p′
2)δ

(
p4

1 − p′4
1

)
×�µ(p1 + p′

1)Dµν(p1 − p′
1))�

ν(p2 + p′
2) + [p′

1 ↔ p′
2]. (27)

By noting that Di4 is the only non-vanishing contribution of Dµν in the centre-of-mass frame
(where p1 = −p2 = p, p′

1 = −p′
2 = p′ and |p| = |p′| = p), we get the identity

�µ(p1 + p′
1)Dµν(p1 − p′

1))�
ν(p2 + p′

2) = −8miβ2e2(p′ × p)

κ(p − p′)2
. (28)
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(a) (b) (c)

Figure 3. Two-particle scattering at one-loop.

Therefore, if we take into account the combination of possible diagrams, equation (27) reduces
to

S
(0)
f i,exc = −(2π)4δ̃4(p1 + p2 − p′

1 − p′
2)

[
2πδ

(
p4

1 − p′4
1

)] 2e2

mκ
cot θ,

where θ is the scattering angle. By noting that M
(0)
λ = 1 and M

(0)
f i,exc = 2πδ

(
p4

1 − p′4
1

)
, the

invariant amplitude for the tree-level scattering is

A(0)(p, θ) = −λ − 2ie2

mκ
cot θ.

The diagrams which contribute to the one-loop two-particle scattering amplitude are
depicted in figure 3. The bubble diagram ensuing from the contact interaction generates the
following scattering amplitude:

S
(1)
f i,λ = −λ2(2π)2δ̃4(p1 + p2 − p′

1 − p′
2)δ

(
p4

1 + p4
2 − 2m

)∫
d2k dk5�F (k)�F (p1 + p2 − k).

From [3], the integration in k5 can be performed analytically. Then, with M
(1)
λ =

2πδ
(
p4

1 + p4
2 − 2m

)
, we find that the invariant amplitude is

A
(1)
λ (p) = mλ2

8π

[
ln

�

p2
+ iπ

]
.

Now if we consider the box diagram, the scattering amplitude is

S
(1)
f i,box = −(2π)4δ̃4(p1 + p2 − p′

1 − p′
2)δ

(
p4

1 + p4
2 − 2m

)
δ
(
p4

1 − m
)
δ
(
p′4

1 − m
)

×
∫

d4k �µ(p1 + k)Dµν(k − p1)�
ν(2p2 + p1 − k)�F (k)�F (p1 + p2 − k)

×�α(−k + p1 + p2 + p′
2)Dαβ(k − p′

1)�
β(k + p1) + [p′

1 ↔ p′
2].

If we utilize equation (28) into this equation and integrate over the component k5, then the
invariant amplitude of the box diagram is

A
(1)
box(p, p′) = −16m3β4e4

κ2

∫
d2k

(2π)2

4(k × p)(k × p′)
(k − p)2(k − p′)2(p2 − k2 + iε)

+ [p′ ↔ −p′]. (29)

In this case M
(1)
box = (2π)3δ

(
p4

1 + p4
2 − 2m

)
δ
(
p4

1 − m
)
δ
(
p′4

1 − m
)
. This is just the same

expression as in [17] obtained directly by the Schrödinger field theory. If we use Cauchy’s
theorem for the angular integration, then equation (29) can be rewritten as

A
(1)
box(p, θ) = − e4

2πmκ2
[ln|2 sin θ | + π i].
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For the triangle diagram in figure 3, the scattering amplitude reads

S
(1)
f i,tri = i(2π)3δ̃4(p1 + p2 − p′

1 − p′
2)δ

(
p4

1 − m
)
δ
(
p′4

1 − m
)

×
∫

d4k �ρσ �µ(p1 + k)Dµρ(k − p1)�
ν(k + p′

1)Dνσ (k − p′
1)�F (k) + [p′

1 ↔ p′
2].

If we use once again the properties of the gauge propagator, together with the centre-of-mass
frame and integrate over k5, then, by identifying M

(1)
box = (2π)2δ

(
p4

1 − m
)
δ
(
p′4

1 − m
)
, the

invariant amplitude for the triangle diagram is

A
(1)
tri (p, p′) = 2βe4

κ2

∫
d2k

(2π)2

4(k − p) · (k − p′)
(k − p)2(k − p′)2

+ [p′ ↔ −p′].

Clearly, this integral may be seen as similar to the expression obtained in [17], simply by
performing the shift: k′ = k − p′. Since the integral is logarithmically divergent, we use the
cutoff � for the ultraviolet divergences. This allows us to rewrite equation (29) as

A
(1)
tri (p, θ) = − e4

2πmκ2
ln

�2

2p2| sin θ | .
Hence, we obtain an expression of the total renormalized invariant amplitude that is in

agreement with [17]:

A(p, θ, µ) = −λR − 2ie2

mκ
cot θ +

m

8π

[
λ2

R − 4e4

m2κ2

] [
ln

µ2

p2
+ iπ

]
,

where λR is the renormalized coupling constant, obtained from the redefinition of λ to eliminate
the ultra-violet divergencies, and µ is an arbitrary scale constant. Note that with the choice
λR = ± 2e2

m|κ| , the scale dependence vanishes. Moreover, if we choose the upper + sign in λR ,

then we get A(θ) = 4πα
m

[i cot θ + sgn α], with α = e2

2πmκ
being the AB parameter. Therefore,

this result reproduces the AB amplitude. The Galilean-covariant approach discussed in the
introduction has therefore been utilized with path-integral quantization to consider non-
relativistic bosons coupled to the CS gauge field. As an application, we have obtained a
Lorentz-like (albeit non-relativistic) formulation of the AB effect.

4. Concluding remarks

In this paper, we have provided another illustration of a covariant approach to Galilean
field theories based on a (4, 1) Minkowski space: the construction of non-relativistic models
of complex scalar bosons coupled to Chern–Simons gauge fields. The group-theoretical
motivation is that the 11-dimensional central extension of the Galilei algebra of (3, 1) space-
time is a Lie subalgebra of the inhomogeneous Lorentz algebra of the (4, 1) Minkowski space.
We have built various models by starting with the Carroll–Field–Jackiw three-dimensional
Chern–Simons term, for which the usual Lorentz covariance is broken. As an application
of this covariant formalism, we have examined the Aharonov–Bohm effect and retrieved the
invariant scattering amplitude up to one-loop already found in the literature. Further study of
applications of this formulation of Galilei-invariant field theories in condensed matter physics
and to many-body problems is under way.
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[23] Hassaı̈ne M and Horváthy P A 2000 Ann. Phys., NY 282 218
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